Announcement

Collapse
No announcement yet.

Creatine electrolyte supplement improves anaerobic power and strength: a randomized double-blind control study

Collapse
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Creatine electrolyte supplement improves anaerobic power and strength: a randomized double-blind control study



    The purpose of the study was to examine the effects of a creatine electrolyte MIPS on strength and power in recreational strength trained individuals. We compared two supplementation groups, one was MIPS formulated with creatine and electrolytes and the other group had placebo formulated with only maltodextrin, before and after 6 weeks of supplementation. Measurements of maximal strength (1RM) as well as other biomechanical performance variables during the bench press and back squat. Our primary hypothesis was supported, the MIPS group displayed a significant increase to their back squat and bench press 1RM compared to the placebo group.
    The MIPS group increased the maximal strength for both the back squat and bench press exercises following 6 weeks of supplementation. In agreement with this finding, Hoffman et al. [26] found an increase in back squat 1RM of approximately 15.6%, for groups supplemented with creatine monohydrate for 10 weeks using 10.5 g.d− 1. Pearson et al. [27] also found a significant increase in back squat 1RM following 10 weeks of creatine monohydrate supplementation. Subjects were given 5 g.d− 1 for the supplementation period and experienced a significant increase of 11.5% in their back squat 1RM [27]. Another study tested maximal back squat strength in female soccer players at five and 13 weeks of creatine monohydrate supplementation [2]. Supplementation consisted of a 15 g.d− 1 for one-week loading phase followed by a four-week maintenance phase of 5 g.d− 1. The soccer players displayed significant 23.6% increases in their 1RM back squat following 13 weeks of creatine supplementation [2]. These results are in line with the current data, which showed an increase of 13.4% in back squat strength following only a six-week MIPS intervention. The literature and current study seem to agree that creatine supplementation lasting at least 5 weeks can increase back squat maximal strength across various populations ranging from recreational to competitive athletes. Benefits from the MIPS were also very similar to those using creatine monohydrate at relatively similar doses (4–5 g.d− 1).
    The current study displayed that subjects in the MIPS group significantly increased their bench press 1RM by 5.9% following 6 weeks of supplementation. Our results are in agreement with other studies that displayed significantly increased the upper body maximal strength in a range of active people following creatine supplementation [9, 22, 26, 28, 29]. Hoffman et al. [26] found an increase in bench press 1RM of 13%, for groups supplemented with creatine monohydrate for 10 weeks using 10.5 g.d− 1. This increase amounted to a two-and-a-half-fold increase compared to their placebo counterparts. Another study using 28 days of creatine supplementation found a 6% increase in bench press 1RM when compared to their baseline values [9]. Pearson et al. [27] used a 5 g.d− 1 creatine supplementation over 10 weeks and found that bench press maximal strength significantly increased by 3.4%. A recent study involving recreational bodybuilders used 5 g.d− 1 doses of creatine monohydrate and observed an increase in bench press 1RM over a four-week period by 7.5% [30].
    Our secondary hypothesis was partially supported, as the MIPS group significantly increased their total concentric work and mean power during the bench press maximal repetition test. Very few studies using creatine supplementation have been done using the performance variables in the current study performing repetitions to failure under certain loading conditions [13, 21, 31]. A 28-day supplementation study using male powerlifters examined a carbohydrate-protein creatine supplements effect on maximal repetition tests across five subsequent sets of bench press [21]. Following supplementation, the groups supplementing with creatine had an increased number of repetitions in sets one, four, and five [21]. This finding could primarily be because of creatine supplementation increasing PCr, since the repetition test occurring at 80% 1RM is heavily dependent on the phosphagen system [13]. The phosphagen system is typically only predominant for 10–15 s and plays a large role in repeated bout exercises. An increase in the amount of creatine available can prolong the usage of the phosphagen system, thus increasing performance over the latter repetitions. The current study only used a single set at 80% of subject’s determined 1RM to closely examine the effect of MIPS supplementation on maximal repetitions to failure. A more recent study examined a similar protocol of performing repetitions to failure at 80% 1RM [13]. Following 30 days of supplementation, both groups supplemented with polyethylene glycosylated creatine (1.25 and 2.50 g.d− 1 doses) increased their repetitions to failure by 25.7 and 21.9%, respectively [13]. This result suggests that maybe a larger dose of creatine does not always indicate a greater benefit. The significant increase of 26.5% in the current study appears to be in line with current knowledge of creatine increasing the work capacity until failure while performing the bench press exercise at 80% 1RM.
    The current data indicated a non-significant, but large effects size (ηp2=0.16) increase in mRFD and a significant increase of mean power during the bench press maximal repetition test for the MIPS group. A maximal repetition test at this specified load is heavily dependent on the phosphagen system [21]. While no research was found on mRFD during the bench press, an increase of mRFD shows a possibility of decreased rate of fatigue. Subjects that displayed an increased mRFD were achieving their peak force at a much faster rate throughout their repetition test. Mean RFD has two major components that could be influenced due to fatigue: velocity and force [32]. With an increase in mRFD, it is possible that MIPS participants were able to maintain either their peak force applied to the barbell, as well as the rate at which the force was achieved. Both considerations are heavily influenced with fatigue, as fatigue takes effect, both the magnitude of force and speed of the movement should reduce. The results could indicate an increased performance during repetitions to failure, with the fatigue being minimized during the post intervention testing.
    Most available information on creatine supplementation primarily involves an isolated creatine supplement. This current study combined both creatine and various electrolytes that potentially increase the absorption of creatine, increase transport into the muscle, and increase performance. Therefore, our results may not be directly relatable to a creatine only supplement, due to the addition of electrolytes in the current MIPS. However, Brilla et al. [15] supplemented participants using a magnesium-creatine supplement and observed increases in quadriceps peak torques along with increased intra-cellular water content. This finding could be potentially related to our current study displaying an increased back squat 1RM. The back-squat exercise is a quadriceps dominant movement, requiring greater knee extensor torques to overcome a greater amount of weight. Crisafulli et al. [33] examined a similar electrolyte creatine supplement on repeated sprints during cycling. Cycling performance (peak and average power output) during sprint cycling were increased following 6 weeks of an electrolyte creatine supplement. While not directly comparable, the current information merits further research on creatine supplemented that include electrolytes.
    Limitations

    There were some limiting factors to the current study that could have influenced the results. The maximal repetition strength test was conducted using as many repetitions as possible at 80% of their predicted 1RM. Subjects were instructed to refrain from strenuous exercise prior to testing, but this was not controlled. There was also no control used for back squat depth for subjects to maintain. They were instructed to squat until 90 knee flexion angle was elicited, but no objective protocol to control for depth was utilized. The maximal repetition test for the back squat occurred last in the data collection, and therefore could be affected by accumulative fatigue from the testing procedures. Additionally, the supplement was not tested by an individual third party laboratory to confirm the potency of the supplement prior to the start of the study. Greater adherence to the diet logs provided would have examined the potential impact of diet during the supplementation period and ensure a change in diet did not impact the results. One other potential limitation could be the use of maintenance only doses of supplementation. However, this limitation is minimal as other studies have found that maintenance doses over longer periods of time have the same effect of creatine saturation in muscular tissue [24]. Finally, comparing the MIPS group to a creatine only group would have added to the comparison to examine the effects of electrolytes directly. Our results are in line with previous creatine versus placebo studies and merit more follow up with a direct comparison to a creatine only supplement.

    Future research could focus on expanding to more resistance training exercises using similar repetitions to failure that rely greatly upon the phosphagen system. Creatine supplementation has been noted to have the greatest effect on repeated bout exercises, with multiple repetitions with moderated rest [13, 21, 31, 34]. Comparing the MIPS to a creatine monohydrate supplement would also be a next step to compare if the electrolytes elicit a significant effect compared to a creatine monohydrate supplement.



    https://jissn.biomedcentral.com/arti...970-019-0291-x
Previously entered content was automatically saved. Restore or Discard.
Auto-Saved
Mad :mad: Stick Out Tongue :p Wink ;) Big Grin :D Embarrassment :o Smile :) Frown :( Confused :confused: Roll Eyes (Sarcastic) :rolleyes: Cool :cool: EEK! :eek:
x
Insert: Thumbnail Small Medium Large Fullsize Remove  
x
x

Please enter the six letters or digits that appear in the image below.

Registration Image Refresh Image
Working...
X